

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 2737-2739

Isolation and structural determination of spilacleosides A and B having a novel 1,3-dioxolan-4-one ring

Akiyo Kameyama,^a Yusuke Shibuya,^a Hiroshi Kusuoku,^a Yoshinori Nishizawa,^{a,*} Satoshi Nakano^b and Kuniaki Tatsuta^{b,*}

^aBiological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi 321-3497, Japan ^bDepartment of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received 4 December 2002; revised 27 January 2003; accepted 31 January 2003

Abstract—As the first natural product incorporating 1,3-dioxolan-4-one in spiro structure, spilacleosides A and B were isolated from *Ruscus aculeatus*, and the absolute structures determined. © 2003 Elsevier Science Ltd. All rights reserved.

In the course of our search for keratinization-controlling substances¹ in natural sources, we encountered spilacleosides A and B (1 and 2) having a spiro 1,3-dioxolan-4-one structures, which were composed of aculeoside A^2 and (2R,3S)-2,3-dihydroxy-3-methylpentanoic acid (Fig. 1). These are not only rare examples containing such a spiro structure but also are noteworthy in two aspects: (1) they are the first examples where both segments intermolecularly construct a 1,3-dioxolan-4-one ring with a spiro system at the C-2; (2) the naturally derived 2,3-dihydroxy-3-methylpentanoic acid has the opposite configuration at C-3 to that having (2R,3R) configuration³ produced by a mutant strain of Neurospora crassa⁴ and by Heliotropium strigosum.⁵ A

few natural products intramolecularly incorporating a spiro 1,3-dioxolan-4-one ring are known,⁶ while its usefulness as a building block in asymmetric organic synthesis has been often reported.⁷

Herein we report their isolation and structural determination.

The 30% ethanol extracts of 5 kg of the root of butcher's-broom, *Ruscus aculeatus*, was chromatographed successively on hydrophobic resin DIAION® HP20, silica gel, Sephadex™ LH-20, and octadesylsilylated silica-gel columns, and finally on silica-gel plate (TLC) to afford 1 (90 mg) and 2 (95 mg).

Figure 1.

Keywords: 1,3-dioxolan-4-one; butcher's-broom; Ruscus aculeatus.

^{*} Corresponding authors. Tel.: +81-285-68-7578; fax: +81-285-68-7571; e-mail: nishizawa.yoshinori@kao.co.jp

Position	1					2				
	$\delta^1 \mathrm{H^a}$	J (Hz)	$\delta^{13} C^a$	$\delta^{13}\mathrm{C^b}$	$\Delta\delta$	δ^{1} H ^a	J (Hz)	$\delta^{13} C^a$	$\delta^{13}\mathrm{C^b}$	$\Delta\delta$
1	3.75 dd	12.0, 4.0	83.40	83.38	-0.02	3.74 dd	12.0, 4.0	83.39	83.38	-0.01
3	3.78 m		67.78	67.89	0.11	3.78 m		67.79	67.90	0.11
6	5.58 br d	5.5	124.88	124.87	-0.01	5.60 br d	5.5	124.87	124.86	-0.01
18	0.90 s		16.67	16.65	-0.02	0.94 s		16.71	16.70	-0.01
19	1.31 s		14.77	14.76	-0.01	1.32 s		14.79	14.78	-0.01
21	1.01 d	7.0	14.59	14.58	-0.01	1.02 d	7.0	14.63	14.63	0.00
27a	5.19 d	1.8	113.95	113.91	-0.04	5.20 br d	1.8	113.98	113.97	-0.01
27b	5.07 d	1.8	_	_	_	5.05 br d	1.8	_	_	_
1'	4.57 d	7.5	99.80	99.79	-0.01	4.57 d	7.5	99.80	99.79	-0.01
1''	6.12 d	1.5	97.57	97.55	-0.02	6.12 d	1.5	97.57	97.57	0.00
1′′′	5.23 d	7.6	105.17	105.20	0.03	5.23 d	7.5	105.54	105.59	0.05
2'''	4.16 dd	10.0, 7.6	74.23	74.35	0.12	4.32 dd	10.0, 7.5	74.26	74.39	0.13
3′′′	4.25 d	10.0	75.68	75.79	0.11	4.23 d	10.0	77.56	77.71	0.15
4′′′	_		108.09	108.09	0.00	_		107.01	107.02	0.01
5'''	3.88 q	6.5	72.93	72.90	-0.03	4.02 q	6.5	71.40	71.39	-0.01
6'''	1.27 d	6.5	12.48	12.45	-0.03	1.54 d	6.5	13.72	13.72	0.00
1''''	_		171.18	171.18	0.00	_		172.34	172.34	0.00
2''''	4.67 s		79.96	79.95	-0.01	5.10 s		82.41	82.43	0.02
3''''	_		74.23	74.31	0.08	_		73.37	73.46	0.09
4′′′′a	1.84 m		32.99	33.01	0.02	1.93 m		32.28	32.32	0.04
4′′′′b	1.78 m		_	_	_	1.83 m		_	_	_
5''''	0.95 t	7.5	8.44	8.42	-0.02	0.92 t	7.5	8.39	8.39	0.00

0.03

1.53 s

Table 1. Significant ¹H and ¹³C spectral data, and DIS ($\Delta\delta$) for 1 and 2

1.53 s

Both their molecular formulas were determined to be C₅₆H₈₂O₂₄ by HRESI-MS; [M+Na]⁺,1161.5063 and 1161.5087 (calcd 1161.5094), respectively.

20.17

20.20

Their ¹³C NMR spectra (Table 1) were very similar to those of aculeoside A (3) isolated from the same plant by Sashida group,² except for the absence of a carbonyl signal of aldoketose at 205.3 ppm and the presence of additional signals at 171.18 (C-1""), 108.09 (C-4""), 79.96 (C-2""), 74.23 (C-3""), 32.99 (C-4""), 20.17 (C-6"") and 8.44 ppm (C-5"") in **1**, and 172.34 (C-1""), 107.01 (C-4"), 82.41 (C-2""), 73.37 (C-3""), 32.28 (C-4""), 21.77 (C-6"") and 8.39 ppm (C-5"") in 2. Both 1 and 2, on refluxing in MeOH for 1 h, cleanly gave aculeoside A (3: $[\alpha]_D^{21}$ -50.5°(c 0.10, MeOH))² and 2,3-dihydroxy-3-methylpentanoic acid methyl ester (4: $[\alpha]_D^{21}$ -28°(c 0.08, CHCl₃)). The spectral data of 3 coincided with that reported.² In combination with H-H COSY and HMBC spectra, those additional signals other than that at ca. 107 ppm supported the presence of 2,3-dihydroxy-3-methylpentanoic acid as a partial structure in 1 and 2. The methyl esters 4 thus obtained from 1 and 2 were identical in all respects in their ¹H and ¹³C NMR spectra, ⁸ showing that they were endowed with the same configuration. To determine the absolute structure of 4, two authentic samples of 2,3dihydroxy-3-methylpentanoic acid methyl esters were prepared in optically pure forms by the reported method: 3 erythro (2R,3S) isomer (4: $[\alpha]_{D}^{26}$ -29°(c 1.0, CHCl₃))⁸ and threo (2R,3R) isomer (5: $[\alpha]_D^{26}$ -24° (c 1.2, CHCl₃))⁸ known as strigosic acid.^{4,5} The ¹H and ¹³C NMR spectra of the naturally derived methyl ester were

identical with those of **4**, and the coincidence of optical rotation confirmed it to be of (2R,3S) configuration (Fig. 2). Thus, it is different from the (2R,3R) isomer **5** produced by a mutant strain of *Neurospora crassa*⁴ and by *Heliotropium strigosum*.⁵

21.77

21.82

0.05

The manner of combination of these two parts, aculeoside A and the dihydroxyacid, was determined as follows. The absorptions at 1811 cm⁻¹ in 1 and 1805 cm⁻¹ in 2 in the IR spectra suggested the presence of the γ-lactone, 1,3-dioxolan-4-one ring.⁹ The corresponding absorption of the δ-lactone, 1,3-dioxan-4-one, should have appeared at ca. 1750 cm⁻¹.¹⁰ This was confirmed by differential isotope shifts (DIS) in the ¹³C NMR spectrum upon deuterium exchange (Table 1).¹¹ The C-3'''' carbon showed 0.08 ppm and 0.09 ppm shift change in 1 and 2, respectively, while the C-2'''' carbon showed much smaller changes, -0.01 ppm in 1 and 0.02 ppm in 2. The stereochemistry at the spiro carbon atom

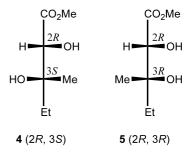


Figure 2.

^a Spectra were measured in C₅D₅N-CD₃OD (10:1).

^b Spectra were measured in C₅D₅N–CD₃OH (10:1).

Figure 3. NOE correlation of the sugar moiety of 1 and 2.

was determined on the basis of NOE studies (Fig. 3). The NOEs observed in the two isomers, especially between Me-6" and H-2" in 1 and between H-5" and Me-6" in 2, showed the appropriateness of the stereoalignment around the spiro carbon as shown in Figure 3.

The ease of methanolysis of 1 and 2 suggested that the isolation of aculeoside A (3) might have been brought about by methanol extraction in reflux. Thus, the absolute structures of spilacleosides A and B were determined to be 1 and 2. These are the first examples found in nature of intermolecularly formed 1,3-dioxolan-4-one ring with a spiro system at the C-2.

Acknowledgements

We are grateful to Advanced Research Institute for Science and Engineering, Waseda University for the generous support of our program. The present work was partially supported by Grant-in-Aid for Scientific Research (A) from the Ministry of Education, Science, Sports and Culture.

References

- 1. (a) Freedberg, I. M. In *Epidermal Differentiation and Keratinization*; Fitzpatrick, T. B.; Eisen, A. Z.; Wolff, K.; Freedberg, I. M.; Austen, K. F., Eds.; Dermatology in General Medicine, 3rd ed. McGraw-Hill: New York, 1987; pp. 174–184; (b) Ishikawa, J.; Higuchi, K.; Kitahara, T.; Kanazawa, S. *Jpn. Kokai Tokkyo Koho* P2001-322943A; (c) In the presence of 0.0001% of 1, the production of cathepsin D was increased to 4.8 times that of the control. The biological activities will be reported elsewhere in detail by: Takema, Y.; Kitahara, T.; Higuchi, K. and Ishikawa, J.
- 2. Horikawa, T.; Mimaki, Y.; Kameyama, A.; Sashida, Y.; Nikaido, T.; Ohmoto, T. *Chem. Lett.* **1994**, 2303. Natural

- aculeoside A: $[\alpha]_D$ –50.0° (c 0.10, MeOH).
- Crout, D. H. G.; Whitehouse, D. J. Chem. Soc., Perkin Trans. 1 1977, 544.
- (a) Adelberg, E. A.; Bonner, D. M.; Tatum, E. L. J. Biol. Chem. 1951, 190, 837; (b) Sjolander, J. R.; Folkers, K.; Adelberg, E. A.; Tatum, E. L. J. Am. Chem. Soc. 1954, 76, 1085.
- 5. Mattocks, A. R. J. Chem. Soc. 1964, 1974.
- (a) Stampoulis, P.; Tezuka, Y.; Banskota, A. H.; Tran, K. Q.; Saiki, I.; Kadota, S. *Org. Lett.* 1999, *1*, 1367; (b) Tezuka, Y.; Stampoulis, P.; Banskota, A. H.; Awale, S.; Tran, K. Q.; Saiki, I.; Kadota, S. *Chem. Pharm. Bull.* 2000, *48*, 1711.
- (a) Seebach, D.; Naef, R. Helv. Chim. Acta 1981, 64, 2704; (b) Frater, G.; Muller, U.; Gunther, W. Tetrahedron Lett. 1981, 22, 4221; (c) Pearson, W. H.; Cheng, M.-C. J. Org. Chem. 1986, 51, 3746; (d) Pearson, W. H.; Cheng, M.-C. J. Org. Chem. 1987, 52, 1353; (e) Hoye, T. R.; Peterson, B. H.; Miller, J. D. J. Org. Chem. 1987, 52, 1351; (f) Sefkow, M. J. Org. Chem. 2001, 66, 2343.
- 8. The optical rotations of the corresponding carboxylic acids are the following. (2R,3S) Isomer: $[\alpha]_D^{26} 16^\circ$ (c 0.66, 0.1 M aq. HCl), lit.³ $[\alpha]_D^{26} 15.6^\circ$ (c 2.3, 0.1 M aq. HCl); (2R,3R) isomer: $[\alpha]_D^{26} 19^\circ$ (c 0.57, 0.1 M aq. HCl), lit.³ $[\alpha]_D^{26} 23.1^\circ$ (c 2.0, 0.1 M aq. HCl). ¹H NMR (600 MHz in CDCl₃; δ , ppm from TMS, and J in Hz) spectral data of the esters are the following. 4: 0.96 (3H, t, J=7.0, H-5'''), 1.16 (3H, s, H-6'''), 1.56 (1H, dq, J=14.0 and 7.0, H-4''''), 1.69 (1H, dq, J=14.0 and 7.0, H-4''''), 2.38 (1H, br s, OH-3''''), 3.10 (1H, d, J=7.0, H-2''''). 5: 0.97 (3H, t, J=7.0, H-5''''), 1.22 (3H, s, H-6''''), 1.43 (1H, dq, J=14.0 and 7.0, H-4''''), 2.41 (1H, s, OH-3''''), 3.08 (1H, d, J=6.5, OH-2''''), 3.84 (3H, s, -CO₂Me), 4.05 (1H, d, J=6.5, H-2''''), 3.84 (3H, s, -CO₂Me), 4.05 (1H, d, J=6.5, H-2'''')
- 9. Seebach, D.; Renaud, P. Helv. Chim. Acta 1985, 68, 2342.
- (a) Seebach, D.; Zimmermann, J.; Gysel, U.; Ziegler, R.;
 Ha, T.-K. J. Am. Chem. Soc. 1988, 110, 4763; (b) Brettle,
 R. J. Chem. Soc., Perkin Trans. 1 1972, 611.
- Gagnaire, D.; Vincendon, M. J. Chem. Soc., Chem. Commun. 1977, 509.